Benchmarking two-photon absorption with CC3 quadratic response theory, and comparison with density-functional response theory.

نویسندگان

  • Martin J Paterson
  • Ove Christiansen
  • Filip Pawłowski
  • Poul Jorgensen
  • Christof Hättig
  • Trygve Helgaker
  • Paweł Sałek
چکیده

We present a detailed study of the effects of electron correlation on two-photon absorption calculated by coupled cluster quadratic response theory. The hierarchy of coupled cluster models CCS, CC2, CCSD, and CC3 has been used to investigate the effects of electron correlation on the two-photon absorption cross sections of formaldehyde (CH2O), diacetylene (C4H2), and water (H2O). In particular, the effects of triple excitations on two-photon transition cross sections are determined for the first time. In addition, we present a detailed comparison of the coupled cluster results with those obtained from Hartree-Fock and density-functional response theories. We have investigated the local-density approximation, the pure Becke-Lee-Yang-Parr (BLYP) functional, the hybrid Becke-3-parameter-Lee-Yang-Parr (B3LYP), and the Coulomb-attenuated B3LYP (CAM-B3LYP) functionals. Our results show that the CAM-B3LYP functional, when used in conjuction with a one-particle basis-set containing diffuse functions, has much promise; however, care must still be exercised for diffuse Rydberg-type states.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin-independent two-photon circular dichroism calculations in coupled cluster theory.

We present the first origin-independent approach for the treatment of two-photon circular dichroism (TPCD) using coupled cluster methods. The approach is assessed concerning its behavior on the choice of the basis set and different coupled cluster methods. We also provide a comparison of results from CC2 with those from density functional theory using the CAM-B3LYP functional. Concerning the ba...

متن کامل

Open-Ended Recursive Approach for the Calculation of Multiphoton Absorption Matrix Elements

We present an implementation of single residues for response functions to arbitrary order using a recursive approach. Explicit expressions in terms of density-matrix-based response theory for the single residues of the linear, quadratic, cubic, and quartic response functions are also presented. These residues correspond to one-, two-, three- and four-photon transition matrix elements. The newly...

متن کامل

Photosensitizing properties for porphyrazine and some derivatives

We have investigated photosensitizing properties for porphrazine and eleven of its related derivatives based on time-dependent density functional theory (TD-DFT) calculations. The modles have been divided into two categories based on the existence of CN functional group in one category but not in the other one. The other functional groups include H, CH3, F, CF3, C6H5, and C6F5 counterparts. The...

متن کامل

Afrl-rx-wp-ja-2017-0127 Linear and Nonlinear Optical Response in Silver Nanoclusters: Insight from a Computational Investigation (postprint)

We report a density functional theory (DFT) and time-dependent DFT (TDDFT) investigation of the thiolated silver nanoclusters [Ag44(SR)30] 4−, Ag14(SR)12(PR′3)8, Ag31(SG)19, Ag32(SG)19, and Ag15(SG)11, which were synthesized and for which one-photon absorption (OPA) characterization is available. Our computational investigation based on careful examination of the exchange-correlation functional...

متن کامل

Molecular Quadratic Response Properties with Inclusion of Relativity

This thesis concerns quadratic response properties and their application to properties in Jablonski diagrams such as resonant two-photon absorption and excited state absorption. Our main interest lies in optical power limiting applications, and in this context, molecules containing heavy metal atoms prove superior. Therefore, we are interested in how relativity affects these properties, and in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 124 5  شماره 

صفحات  -

تاریخ انتشار 2006